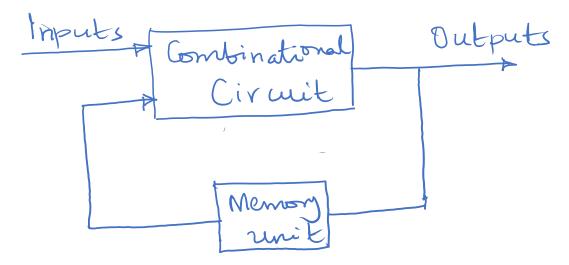
PUE 3141: ADVANCED DIGITAL SYSTEMS DESIGN

LECTURE 1B

BY DR. MUTUGI KIRUKI

Topics:

i) Review of sequential logic designs with flip flops (FF)


References:

- i) Elijah, M. (2009) Foundations of Digital Electronics. University of Nairobi Press
- ii) Rafiquzzaman, M. (2005) Fundamentals of Digital Logic & Microcomputer Design (5th Edition). Wiley.

 Examples to be provided in the physical class.

1. Review of Sequential Logic Designs with Flip Flops

Sequential logic circuit can be regarded as combinational circuit that incorporates memory as shown below:

Flip Flops

- This is the basic building block in the memory of electronic devices.
- It is a 1-bit memory unit with 2 stable states and is the basic memory unit in synchronous sequential logic systems.
- Common FFs include:
 - i) SR Flip Flop ii) JK Flip Flop iv) D Flip Flop iii) T Flip Flop
- In sequential logic design using FFs, the following major steps are followed:

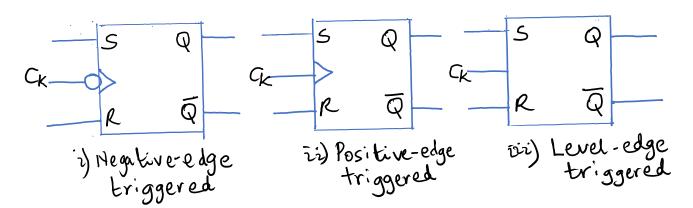
 Characteristic —— Excitation —— State

 Table & Equation —— Table

 Table

Truth Table: What is the current output given a set of (current) inputs?

Characteristic Table: What is the next state, when we have a given set of inputs?


Excitation Table: We are in a certain present state and want a particular next state, what are the required inputs?

State Diagram: Transitions from one state to another and the input conditions necessary for the respective transitions.

Flip-flop Triggering

- i) Negative-edge triggered: Output state changes on the falling edge of a clock pulse
- ii) Positive-edge triggered: Output state changes on the rising edge of a clock pulse
- iii) Level-triggered: Output changes during the time duration that the clock signal is at logic High (1) level.

The symbolic representation for the above 3 types of triggering are shown below. SR flip flop is used for the illustration:

A. SR (Set - Reset) Flip Flop

i) Characteristic Table of clocked SR FF

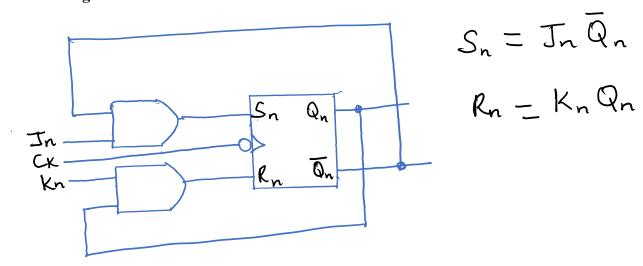
Inputs		Next State
Sa	Rn	Qn+1
0	0	Qn
Ð	1	0
t	0	l
	I	X

ii) Excitation Table of Clocked SRFF

	PS Qn	NS Qn+1	Require	ed Inputs Rn
-	0	0	0	X
	0	1	(0
	(0	O	1
			X	0

The FF has 2 states : either Q=0 or Q=1. If it's in state o, then after the application of a clock pulse it can make a transition to state 1 if Sn=1 and Rn=0

$$S_{n}=0$$
 $S_{n}=0$
 $S_{n}=0$
 $S_{n}=0$
 $S_{n}=0$
 $S_{n}=0$
 $S_{n}=0$
 $S_{n}=0$


B. JK Flip Flops

- o Named after Jack Kilby
- o Is an improvement on the SR flip flop:

Limitation of SR FF: Invalid condition at $S_n=1$ and $R_n=1$

With JK, both inputs J_n and K_n can be at Logic 1 simultaneously.

Converting SR FF into a JK FF:

i) Characteristic Table of JK FF

~	Inputs In Kn		NS Qn+1
	0	0	Qn
	0	1	0
	1	0	l
****	Í	1	Q _n

ri) Excitation Table of JK FF

PS Qn	NS Qnti	Required Inputs In Kn
0	0	O X
0	1	l ×
l	0	X
t	l	X O

iii) State Diagram

$$K_{n}=0$$

$$J_{n}=0$$

$$J_{n}=0$$

JK FF symbol

C. D (Delay) Flip Flop

- o Input data appears at the output after the clock pulse
- \circ It ensures that the invalid input combinations S=1 & R=1 for the SR FF can never occur.
- Is also called a "transparent latch' since the output Q follows the D input when CLK=1. Hence the transfer of inputs to outputs is transparent as if the FF were not present.

Converting SR / JK FF into D FF:

• Introduce an inverter across the inputs

DOK Q C			Q
Inputs NS Quei	PS Qn	MS Q _{n+1}	on Table Required Input Dn
Inputs NS Dn Quri O 1	0 0	0 - 0	0 1
vii) State Diagram Dn=0 Dn=0 A		<u> </u>	FF Symbol
$D_n = 0$	Dn	CK	Q}

D. T (Toggle) Flip Flop

o Complements (toggles) its output when the clock input is applied with T=1. The output remains unchanged when T=0.

Converting JK FF into T FF

• By shorting J & K inputs to provide the T input. The output is complemented when T=1 at the clock whilst the output remains unchanged when T=0 at the clock.

T	J	Q
	K	Q
CK	1	

2) Characteristic Table

Input Tn	Output Qn+1
0	Q N
1	Qn

vi) Excitation Table

ĺ	PS 1	NS	Regrived Input
	Qn	Qn+1	in
ľ	0	0	0
	0	1	1
	1	0	
1	1		0

iri) State Diagram In =

T FF symbol