
 Logic diagrams

 Truth tables

 Design entry

 Logic Simulation

 Logic Synthesis

 Timing verification & fault simulation

 Boolean expressions

 Complex abstractions of the behavior of a digital system

PUE 3141: ADVANCED DIGITAL SYSTEMS DESIGN

LECTURE 2

13/07/2022

BY DR. MUTUGI KIRUKI

Topics:

i) Combinational & Sequential Logic Designs with Verilog HDL

References:

i) Mano, M.M., & Ciletti, M.D. (2007) Digital Design (4th Edition). Pearson.

Introduction to Verilog HDL

Hardware Description Language (HDL): Computer-based language that describes the hardware

of digital systems in a textual form. It describes hardware structures and the behavior of logic

circuits. It can be used to represent:

HDLs are used in various major steps in digital system design flow such as:

Design entry:

Creates an HDL-based description of the functionality that is to be implemented in hardware. This

can be in various forms such as: Boolean logic equations, truth tables, a netlist of interconnected

gates, or an abstract behavioral model.

Logic simulation:

Simulation of a circuit predicts how the hardware will behave before it is actually fabricated. This

allows the detection of functional errors in a design without having to physically create and operate

the circuit. Errors detected in the simulation can be corrected by modifying the appropriate HDL

statements. Test bench is the stimulus (i.e., the logic values of the inputs to a circuit) that tests the

functionality of the design.

Logic synthesis:

This is the process of deriving a list of physical components and their interconnections (netlist)

from the model of a digital system described in an HDL. This netlist can then be used to fabricate

an IC or to lay out a PCB with the hardware counterparts of the gates in the list. Logic synthesis is

similar to compiling a program in a conventional high-level language. However, instead of

producing an object code, logic synthesis produces a database describing the elements and

structure of a circuit. The database specifies how to fabricate a physical IC that implements in

silicon the functionality described by statements made in an HDL.

Timing verification:

Each logic gate in a circuit has a propagation delay, hence a signal transition at the input of a

circuit cannot immediately cause a change in the logic value of the output of a circuit. Propagation

delays ultimately limit the speed at which a circuit can operate. Timing verification checks each

signal path to verify that it is not compromised by propagation delay.

Two standard HDLs supported by IEEE are:

 Very High Speed Integrated Circuit (VHSIC) HDL i.e., VHDL

 Verilog

Generally, the design flow in CAD systems is comprised of the following steps:

Verilog Syntax

 Verilog is case sensitive. All Verilog keywords are lower-case

 Number syntax: <size>'<radix><value>;

o Unsized numbers are stored as 32-bit e.g., 1 is stored as 32-bit

o Radix include binary, octal, decimal, hexadecimal

o Radix and hex digits (a,b,c,d,e,f) are case insensitive

o When <size> is smaller than <value>, then leftmost bits of <value> are truncated

E.g.: 8’hBA, 7’b1001101, ‘hFC

reg – unsigned variable

integer – signed variable (32 bits)

time – unsigned integer (64 bits)

real – Double precision floating point variable

 Data Types:

Verilog has two primary data types:

o Nets: represent structural connections between components. E.g.: wire

o Registers: represent variables used to store data.

 Registers store the last value assigned to them until another assignment

statement changes their value. They represent data storage constructs.

 Register Data Types:

 Verilog Operators:

o Arithmetic Operators - Binary: +, -, *, /, %

o Relational operators - <, >, <=, >=. The result is 0 if the relation is false and 1 if

the relation is true

o Logical operators - !: logic negation, &&: logical and, ||: logical or

o Bit-wise operators - ~: negation, &: and, |: inclusive or, ^: exclusive or

 Modules:

A module is the fundamental descriptive unit in the Verilog language. It is declared by

the keyword module and must always be terminated by the keyword endmodule.

Combinational Logic

 Can be described by a schematic connection of gates, a set of Boolean equations, or by a

truth table

Example 1_A:

 Using Icarus Verilog for HDL simulation.

 Logic described by logic diagram/schematic

Top Module

module example_one (A, B, C, D, E);

//Declare inputs, outputs and internal connections

input A, B, C;

output D, E;

wire w1;

//Implementation of the circuit / schematic

and G1(w1, A, B); //Instantiate the and module

not G2(E, C);

or G3(D, w1, E);

endmodule

Test Bench

`timescale 1ns/1ns

`include "example_one.v"

module example_one_tb;

reg A, B, C; //inputs to simulate

wire D, E; //outputs to simulate

//Instantiate the module that we are simulating

example_one tb_one (A, B, C, D, E); //Retain the same

order

//simulate the circuit using the initial block

initial

 begin

 $dumpfile("example_one_tb.vcd");

 $dumpvars(0,example_one_tb);

 A = 1'b0; B = 1'b0; C = 1'b0;

 #30 A = 1'b1;

 #30 A = 1'b0; B = 1'b1; C = 1'b0;

 #60 A = 1'b1; B = 1'b1; C = 1'b1;

 #30

 $display ("Simulation ended");

 end

endmodule

Note:

In simulation, it’s necessary to specify the propagation delay i.e. the amount of delay from the

input to the output of its gates. In Verilog, the propagation delay of a gate is specified in terms of

time units and is specified by the symbol #.

The association of a time unit with physical time is made with the ‘timescale compiler directive.

E.g. ‘timescale 1ns/100ps -> 1st value specifies the unit of measurement for time delays. The

2nd value specifies the precision for which delays are rounded off, in this case to 0.1 ns.

Top Module with Propagation Delays

module example_one_prop_delay (A, B, C, D, E);

//Declare inputs, outputs and internal connections

input A, B, C;

output D, E;

wire w1;

//Implementation of the circuit / schematic

and #(20)G1(w1, A, B); //Instantiate the and module

not #(10)G2(E, C);

or #(30)G3(D, w1, E);

endmodule

Example 1_B:

 Logic circuit described by Boolean Equation

𝐃 = 𝐀𝐁 + 𝑪̅

Top Module

module example_one (A, B, C, D, E);

//Declare inputs, outputs and internal connections

input A, B, C;

output D, E;

//Implementation of the Boolean Equations

assign D = (A & B)|~ C;

assign E = ~ C;

endmodule

Example 2:

Top Module

module example_two (A, B, C, Y1, Y2);

//Declare inputs, outputs and internal connections

input A, B, C;

output Y1, Y2;

wire w1, w2, w3, w4, w5, w6, w7;

//Implementation of the circuit / schematic

and G1(w1, A, B, C); //Instantiate the and module

or G2(w2, A, B, C);

and G3(w5, A, B);

and G4(w6, A, C);

and G5(w7, B, C);

or G6(Y2, w5, w6, w7);

not G7(w3, Y2);

and G8(w4, w2, w3);

or G9(Y1, w1, w4);

endmodule

Test Bench

`timescale 1ns/1ns

`include "example_two.v"

module example_two_tb;

reg A, B, C; //inputs to simulate

wire Y1, Y2; //outputs to simulate

//Instantiate the module that we are simulating

example_two tb_two (A, B, C, Y1, Y2); //Retain the

same order

//simulate the circuit using the initial block

initial

 begin

 $dumpfile("example_two_tb.vcd");

 $dumpvars(0,example_two_tb);

 A = 1'b0; B = 1'b0; C = 1'b0;

 #30 B = 1'b1;

 #30 A = 1'b0; B = 1'b1; C = 1'b1;

 #30 A = 1'b1; B = 1'b1; C = 1'b0;

 #60 A = 1'b1; B = 1'b1; C = 1'b1;

 #30

 $display ("Simulation ended");

 end

endmodule

