
PUE 3141: ADVANCED DIGITAL SYSTEMS DESIGN

LECTURE 3

20/07/2022

BY DR. MUTUGI KIRUKI

Topics:

i) Sequential Logic Designs with Verilog HDL

References:

i) Mano, M.M., & Ciletti, M.D. (2007) Digital Design (4th Edition). Pearson.

Sequential Logic HDL

Recap on Verilog syntax and keywords

initial:

 Declares a single-pass behavior and specifies a single statement or a block statement.

 Expires after the associated statement executes.

 Usually used to prescribe stimulus signals in a test bench – never to model the behavior

of a circuit.

always:

 Declares a cyclic behavior.

 Executes and re-executes indefinitely, until the simulation is stopped.

A module may contain an arbitrary number of initial or always behavioral statements. They

execute concurrently with respect to each other starting at time 0 and may interact through

common variables.

Simulating clock in sequential circuit

In simulating a sequential circuit, it is necessary to generate a clock source for triggering the flip-

flops. Two ways of doing so:

initial

 begin

 clock = 1’b0;

 repeat (30)

#10 clock = ~clock;

 end

initial

 begin

 clock = 1’b0;

 end

initial 300 $finish;

always #10 clock = ~clock;

always @ (event control expression) begin

//Procedural assignment statements that execute when the condition is met

end

Event control operator, @

 Used to suspend activity until an event occurs.

 The event can be:

 An unconditional change in a signal value - e.g., @ A

 A specified transition of a signal value - e.g., @ (posedge clock)

 General form of this type of statement is:

 event control expression (sensitivity list):

o Specifies the condition that must occur to launch execution of the procedural

assignment statements. Variables on the LHS of the procedural statement must be

of the reg data type and must be declared as such.

o Specifies the events that must occur to initiate execution of the procedural

statements associated with the always block. Statements within the block execute

sequentially from top to bottom.

- E.g.: always @ (A or B or C)

Will initiate execution of the procedural

statements in the associated always

block if a change occurs in A, B, or C.

- E.g.: always @ (posedge clock, negedge reset)

Will initiate execution of

the procedural statements

only if the clock goes

through a positive transition

or if reset goes through a

negative transition

Blocking assignment:

B = A

C = B + 1

After execution, B = 1; C = 2

Example: If A=1 and B=3; the two types of assignments give the following results:

Non-blocking assignment:

B <= A

C <= B + 1

After execution, B = 1; C = 4

The sensitivity list can specify:

 Level-sensitive events – occur in combinational circuits and latches.

 Edge-sensitive events – occur in sequential circuits

 In synchronous sequential circuits, changes in flip-flops occur only in

response to a transition of a clock pulse.

 The transition may be either a positive edge (posedge) or a negative edge

(negedge) of the clock.

Blocking and non-blocking assignments

 Blocking assignments use the symbol (=) as the assignment operator. They are executed

sequentially in the order they are listed in a block of statements.

 Non-blocking assignments use (<=) as the operator. They are executed concurrently by

evaluating the set of expressions on the RHS of the list of statements; they don’t make

assignments to their LHS till all of the expressions are evaluated.

fork … join block

 Similar to begin … end block; but statements within it execute in parallel as opposed in

sequence.

 More convenient to use fork …join block instead of begin … end in describing

waveforms

Example 1:

Top Module

module example_three (D, clk, rst, Q);

input D, clk, rst;

output Q;

// Declare the output as a reg

reg Q;

//Implement the circuit

always @ (posedge clk, negedge rst)

//Assign the inputs to the outputs

//Our D-flipflop would operate normally as long as it is not in

reset

//If its in reset, the output would always be at 0

if(rst == 0) Q <= 1'b0; //Non-blocking assignment

else Q <= D; //Normal operation of the circuit

endmodule

Test Bench

`timescale 1ns/1ns

`include "example_three.v"

module example_three_tb;

reg D, clk, rst; //inputs to simulate

wire Q; //outputs to simulate

//Instantiate the module that we are simulating

example_three D_FlipFlop(D, clk, rst, Q); //Retain the same

order

//Simulate the clock

initial

 begin

 clk = 1'b0; //initialize the clock value

 repeat(25)

 #10 clk = ~clk;

 end

//simulate the circuit using the initial block

initial

 begin

 $dumpfile("example_three_tb.vcd");

 $dumpvars(0,example_three_tb);

 D = 1'b1; rst = 1'b0; //our flip flop is the reset state

 #35 D = 1'b1; rst = 1'b1; //Flip in normal operation

 #35 D = 1'b0; rst = 1'b1; //Flip in normal operation

 #35 D = 1'b1; rst = 1'b0; //flip flop is in reset state

 #45

 $display ("Simulation ended");

 end

endmodule

Example 2:

Consider a clocked sequential circuit as shown below:

State Equations

 State equation is an algebraic expression that specifies the condition for a flip-flop state

transition.

𝐴𝑛+1 = 𝐴𝑛𝑥𝑛 + 𝐵𝑛𝑥𝑛

𝐵𝑛+1 = 𝐴𝑛
′ 𝑥𝑛

𝑦𝑛 = (A𝑛 + B𝑛)𝑥𝑛
′

State/Transition Table

State Diagram

Mealy and Moore state machines

There are two distinct types of sequential circuits:

 Mealy sequential circuit

o External outputs are a function of the circuit present states and external inputs.

o For example, the above circuit is a Mealy circuit i.e. 𝐲 = 𝒇 (𝒙, 𝑸𝑨, 𝑸𝑩)

o In the design & operation of Mealy machines, extra precaution must be taken to

ensure that the external inputs do not change states at the same instant with the

clock signal.

 Moore sequential circuit

o External outputs are a function of the circuit present states only.

o The outputs of a Moore machine can be a function of the flip-flop outputs but not

directly connected to external inputs, i.e. 𝐲 = 𝒇 (𝑸𝑨, 𝑸𝑩)

Top Module

module example_Mealy (x, clk, rst, y);

input x, clk, rst;

output y;

// Declare the output as a reg

reg y;

//Declare variables to hold the values of the present and next

states

reg [1:0] state, next_state;

parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11;

//Implement the circuit

//Check if in reset

always @ (posedge clk, negedge rst)

//If its in reset, circuit will always be in reset state i.e. 00

if(rst == 0) state <= S0; //reset state

else state <= next_state; //Normal operation of the circuit

//Form the next state

always @ (state, x)

 case (state)

 S0: if(x) next_state = S1; else next_state = S0;

 S1: if(x) next_state = S3; else next_state = S0;

 S2: if(x) next_state = S2; else next_state = S0;

 S3: if(x) next_state = S2; else next_state = S0;

 endcase

//Form the output

always @ (state, x)

 case (state)

 S0: y = 0;

 S1, S2, S3: y = ~x;

 endcase

endmodule

Test Bench

`timescale 1ns/1ns

`include "example_four_Mealy.v"

module example_Mealy_tb;

reg x, clk, rst; //inputs to simulate

wire y; //outputs to simulate

//Instantiate the module that we are simulating

example_Mealy Mealy_one(x, clk, rst, y); //Retain the same order

//Simulate the clock

initial

 begin

 clk = 1'b0; //initialize the clock value

 repeat(30)

 #10 clk = ~clk;

 end

//Value Change Dump (vcd)

initial begin

 $dumpfile("example_Mealy_tb.vcd");

 $dumpvars(0,example_Mealy_tb);

 #200 $dumpoff; // stop dumping

end

//Simulate the circuit

initial fork

 rst = 0;

 #3 rst = 1;

 #83 rst = 0;

 #89 rst = 1;

 #10 x = 1;

 #30 x = 0;

 #40 x = 1;

 #50 x = 0;

 #52 x = 1;

 #63 x = 0;

 #70 x = 1;

 #80 x = 1;

 #160 x = 0;

 #170 x = 1;

join

endmodule

Simulation

